Приложение 1 к РПД Астрономия 44.03.05 Педагогическое образование (с двумя профилями подготовки) направленность (профили) Математика. Физика Форма обучения – очная Год набора – 2020

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

1.	Кафедра	Математики, физики и информационных технологий
2.	Направление подготовки	44.03.05 Педагогическое образование (с двумя профилями подготовки)
3.	Направленность (профили)	Математика. Физика
4.	Дисциплина (модуль)	Б1.О.18.06 Астрономия
5.	Форма обучения	Очная
6.	Год набора	2020

І. Методические рекомендации

1.1 Методические рекомендации по организации работы студентов во время проведения лекционных занятий

- В ходе лекций преподаватель излагает и разъясняет основные, наиболее сложные понятия темы, а также связанные с ней теоретические и практические проблемы, дает рекомендации для практического занятия и указания для выполнения самостоятельной работы.
- В ходе лекционных занятий обучающемуся необходимо вести конспектирование учебного материала. Обращать внимание на категории, формулировки, раскрывающие содержание изучаемой дисциплины, научные выводы и практические рекомендации, положительный опыт в ораторском искусстве.
- Желательно оставить в рабочих конспектах поля, на которых делать пометки, подчеркивающие особую важность тех или иных теоретических положений. Рекомендуется активно задавать преподавателю уточняющие вопросы с целью уяснения теоретических положений, разрешения спорных ситуаций.

1.2 Методические рекомендации по подготовке к практическим занятиям

- На практическом занятии студенты решают задачи под руководством преподавателя. Семинар проводится по узловым и наиболее сложным вопросам (темам, разделам) учебной программы.
- Практические занятия посвящены изучению наиболее важных тем учебной дисциплины. Они служат для закрепления изученного материала, развития умений и навыков подготовки докладов, сообщений, приобретения опыта устных публичных выступлений, ведения дискуссии, аргументации и защиты выдвигаемых положений, а также для контроля преподавателем степени подготовленности студентов по изучаемой дисциплине.
- В ходе подготовки к практическим занятиям следует изучить основную и дополнительную литературу, учесть рекомендации преподавателя и требования рабочей программы.
- Можно подготовить свой конспект ответов по рассматриваемой тематике, подготовить тезисы для выступлений по всем учебным вопросам, выносимым на занятие. Следует продумать примеры с целью обеспечения тесной связи изучаемой теории с реальной практикой. Можно дополнить список рекомендованной литературы современными источниками, не представленными в списке рекомендованной литературы.

1.3 Методические рекомендации по организации самостоятельной работы обучающихся

- Самостоятельная работа планируемая учебная, учебно-исследовательская, научно-исследовательская работа студентов, выполняемая во внеаудиторное время по заданию и при методическом руководстве преподавателя, но без его непосредственного участия (при частичном непосредственном участии преподавателя, оставляющем ведущую роль за работой студентов).
- Самостоятельная работа студентов (далее СРС) в ВУЗе является важным видом учебной и научной деятельности студента. СРС играет значительную роль в рейтинговой технологии обучения. Обучение в ВУЗе включает в себя две, практически одинаковые по объему и взаимовлиянию части процесса обучения и процесса самообучения. Поэтому СРС должна стать эффективной и целенаправленной работой студента.

- К современному специалисту общество предъявляет достаточно широкий перечень требований, среди которых немаловажное значение имеет наличие у выпускников определенных способностей и умения самостоятельно добывать знания из различных источников, систематизировать полученную информацию, давать оценку конкретной ситуации. Формирование такого умения происходит в течение всего периода обучения через участие студентов в практических занятиях, выполнение контрольных заданий и тестов, написание курсовых и выпускных квалификационных работ. При этом СРС играет решающую роль в ходе всего учебного процесса.
- В процессе самостоятельной работы студент приобретает навыки самоорганизации, самоконтроля, самоуправления, саморефлексии и становится активным самостоятельным субъектом учебной деятельности.
- Формы самостоятельной работы студентов разнообразны. Они включают в себя:
 - изучение учебной, научной и методической литературы, материалов периодических изданий с привлечением электронных средств официальной, статистической, периодической и научной информации;
 - подготовку докладов и рефератов, написание курсовых и выпускных квалификационных работ;
 - участие в работе студенческих конференций, комплексных научных исследованиях.
- Самостоятельная работа приобщает студентов к научному творчеству, поиску и решению актуальных современных проблем.
- Основной формой самостоятельной работы студента является изучение конспекта лекций, их дополнение, рекомендованной литературы, активное участие на практических и семинарских занятиях.

Чтение учебника

- Изучая материал по учебнику, следует переходить к следующему вопросу только после правильного понимания предыдущего, производя на бумаге все вычисления (в том числе и те, которые ради краткости опущены в учебнике) и выполняя имеющиеся в учебнике чертежи.
- Особое внимание следует обращать на определение основных понятий. Студент должен подробно разбирать примеры, которые поясняют такие определения, и уметь строить аналогичные примеры самостоятельно.
- Необходимо помнить, что каждая теорема состоит из предположений и утверждения. Все предположения должны обязательно использоваться в доказательстве. Нужно добиваться точного представления о том, в каком месте доказательства использовано каждое предположение теоремы. Полезно составлять схемы доказательств сложных теорем. Правильному пониманию многих теорем помогает разбор примеров математических объектов, обладающих и не обладающих свойствами, указанными в предположениях и утверждениях теорем.
- При изучении материала по учебнику полезно вести конспект, в который рекомендуется вписывать определения, формулировки теорем, формулы, уравнения и т. д. На полях конспекта следует отмечать вопросы, выделенные студентом для получения письменной или устной консультации преподавателя.
- Письменное оформление работы студента имеет исключительно важное значение. Записи в конспекте должны быть сделаны чисто, аккуратно и расположены в определенном порядке. Хорошее внешнее оформление конспекта по изученному материалу не только приучит студента к необходимому в работе порядку, но и позволит ему избежать многочисленных ошибок, которые происходят из-за небрежных, беспорядочных записей.
- Выводы, полученные в виде формул, рекомендуется в конспекте подчеркивать или обводить рамкой, чтобы при перечитывании конспекта они выделялись и лучше запоминались. Опыт показывает, что многим студентам помогает в работе составление листа, содержащего важнейшие и наиболее часто употребляемые формулы курса. Такой лист не только помогает запомнить формулы, но и может служить постоянным справочником для студента.

Самопроверка

- После изучения определенной темы по учебнику и решения достаточного количества соответствующих задач студенту рекомендуется воспроизвести по памяти определения, выводы формул, формулировки и доказательства теорем. Вопросы для самопроверки, приведенные в настоящем пособии, даны с целью помочь студенту в повторении, закреплении и проверке прочности усвоения изученного материала. В случае необходимости надо еще раз внимательно разобраться в материале учебника, решить ряд задач.
- Иногда недостаточность усвоения того или иного вопроса выясняется только при изучении дальнейшего материала. В этом случае надо вернуться назад и повторить плохо усвоенный раздел.

І.4. Методические рекомендации по решению тестовых заданий

 Тестовая система предусматривает вопросы/задания, на которые обучающийся должен дать один или несколько вариантов правильного ответа из предложенного списка ответов. При поиске ответа необходимо проявлять внимательность.

- При отсутствии какого—либо одного ответа на вопрос, предусматривающий множественный выбор, весь ответ считается неправильным.
- Ответы правильные выделяются в тесте подчеркиванием или любым другим допустимым символом.

І.5. Методические рекомендации по решению задач, в том числе дополнительных

- Важным критерием усвоения теории является умение решать задачи на пройденный материал.
- При решении задач нужно обосновать каждый этап решения исходя из теоретических положений курса. Если студент видит несколько путей решения, то он должен сравнить их и выбрать из них самый лучший. Полезно до начала вычислений составить краткий план решения.
- Решения задач и примеров следует излагать подробно, вычисления располагать в строгом порядке, отделяя вспомогательные вычисления от основных. Чертежи можно выполнять от руки, но аккуратно и в соответствии с данными условиями. Если чертеж требует особо тщательного выполнения (например, при графической проверке решения, полученного путем вычислений), то следует пользоваться линейкой, транспортиром, лекалом и указывать масштаб.
- Решение каждой задачи должно доводиться до ответа, требуемого условием, и по возможности в общем виде с выводом формулы. Затем в полученную формулу подставляют числовые значения (если они даны). В промежуточных вычислениях не следует вводить приближенные значения корней, числа π и т. п.
- Полученный ответ следует проверять способами, вытекающими из существа данной задачи. Если, например, решалась задача с конкретным физическим или геометрическим содержанием, то полезно, прежде всего, проверить размерность полученного ответа. Полезно также, если возможно, решить задачу несколькими способами и сравнить полученные результаты.
- Решение задач определенного типа нужно продолжать до приобретения твердых навыков в их решении.
- Перед решением задачи должно быть полностью приведено ее условие. Само решение следует сопровождать необходимыми расчетами и пояснениями с указанием применяемых формул, анализом и выводами.
- Работа должна быть оформлена аккуратно, написана разборчиво без помарок, зачеркиваний и сокращений слов.

І.б. Методические рекомендации по подготовке к сдаче экзамена

- Экзамен осуществляется в рамках завершения изучения дисциплины (модуля) и позволяет определить качество усвоения изученного материала, а также степень сформированности компетенций.
- Студенты обязаны сдавать экзамен в строгом соответствии с утвержденными учебными планами, разработанными согласно образовательным стандартам высшего образования.
- При явке на экзамен студенты обязаны иметь при себе зачетную книжку, которую они предъявляют экзаменатору в начале экзамена.

П. Планы практических занятий

Тема 1. Сферическая система координат. Небесная механика.

План

- 1. Системы астрономических координат
- 2. Условия наблюдения звезд и Солнца
- 3. Графический метод преобразования координат

Литература: [1, 2].

Тема 2. Методы астрофизических исследований.

План

- 4. Оптическая астрономия
- 5. Радиоастрономия
- 6. Спектральный анализ
- 7. Внеземная астрономия.
- 2. Решение задач.

Тема 4. Определение температуры небесных тел. Приёмники излучения.

План

- 1. Определение основных понятий.
- 2. Решение задач.

Литература: [1, 2].

Тема 5. Планеты и их спутники.

1.Определение основных понятий.

2. Решение залач.

Литература: [1, 2].

Тема 6. Физика Солнца. Солнечная активность. Спектр излучения Солнца. Солнечный ветер. Солнечная атмосфера. Фотосфера. Хромосфера. Корона.

1.Определение основных понятий.

2. Решение задач.

Литература: [1, 2].

Тема 7. Невозмущенное Солнце. Источник энергии Солнца.

1.Определение основных понятий.

2.Решение задач.

Литература: [1, 2].

Тема 8. Звёзды.

План

- 1. Обшие сведения о звездах
- 2. Двойные системы и массы звезд
- 3. Спектры и светимости звезд
- 4. Статистические зависимости между основными характеристиками звезд
- 5. Атмосферы звезд

Литература: [1, 2].

Тема 9. Переменные, новые и сверхновые звёзды.

План

- 6. Начальная стадия эволюции звезд
- 7. Стадия главной последовательности
- 8. Эволюция и переменность красных гигантов
- 9. Эволюция звезд с потерей массы
- 10. Сверхновые звезды
- 11. Конечные стадии эволюции звезд
- 12. Эволюция тесных двойных систем
- 13. Рентгеновские источники излучения

Литература: [1, 2].

Тема 10. Галактическая и внегалактическая астрономия.

План

- 1. Объекты, принадлежащие нашей Галактике
- 2. Определение расстояний до звезд
- 3. Распределение звезд в Галактике
- Звездные скопления и их эволюция
 Пространственные скорости звезд и движение Солнечной системы
- 6. Вращение и масса Галактики
- 7. Межзвездная пыль
- 8. Межзвездный газ
- 9. Космические лучи, галактическая корона и магнитное поле Галактики
- 10. Общая структура Галактики
- 11. Проблема шкалы расстояний
- 12. Структура и типы галактик
- 13. Определение расстояний до галактик
- 14. Состав галактик
- 15. Физические свойства галактик
- 16. Активность ядер галактик и квазары
- 17. Пространственное распределение и эволюция галактик

Литература: [1, 2].

Тема 11. Космология и космогония. Вселенная.

План

Космологический принцип 1.

- Модель однородной изотропной Вселенной, основанная на законах Ньютона
 Релятивистская космология
- 4. Модель «горячей» Вселенной

Литература: [1, 2].